
RFID Reader

20

Part list 1

What you should see 18

Monthly challenge

19

Hardware 5

Libraries 7

Sneak peek 21

What is a Radio Frequency ID reader? 3

Exercises

Program 9

PART LIST

16X2 LCD

BUZZER

RFID KIT
•	 RFID READER
•	 MASTER PROGRAMMING

CARD
•	 TOKEN

10K POTENTIOMETER

220 OHM RESISTOR

UNO R3

LED

x1

x1

x1

x1

x2

x1

x1

1

INTRODUCTION

W E L C O M E T O M O N T H 1 7 !

WHAT ARE WE CREATING?

Okay, so far you’ve built a Lock Box, Infrared Security System, and Laser Tripwire.
If we didn’t know you better we’d think you were a bit paranoid or something. We

figure there have to be a few people you would like to see from time-to-time, so this
month you will build a Radio Frequency Identification (RFID) reader. That way, the
few people you trust can get by that top-notch security system you’ve rigged up!

P R O J E C T A N D L E A R N I N G O B J E C T I V E S

You will learn how to write a program that will allow you to read a master RFID key
card and authorize/deactivate a card/token.

ELECTRONICS
1.	 What is RFID?

2.	 PICC - Proximity Integrated Circuit Card

3.	 Integrating multiple Creation Crate projects

PROGRAMMING
1.	 EEPROM Read/Write - Electrically Erasable 			

Programmable Read-Only Memory

2.	 SPI - Serial Peripheral Interface

L I N K
www.creationcrate.com/month-17

SSKR45

S U P P O R T P A G E :

Still Need Help?
Go www.creationcrate.com and use our contact page!

2

WHAT IS A RADIO FREQUENCY ID READER?

Radio-frequency identification (RFID) uses electromagnetic fields to automatical-
ly identify and track tags attached to objects. The tags contain electronically stored
information. Passive tags collect energy from a nearby RFID reader’s “interrogat-
ing” radio waves.

RFID tags are used in many industries, for example, an RFID tag attached to an
automobile during production can be used to track its progress through the as-
sembly line; RFID-tagged pharmaceuticals can be tracked through warehouses;
and implanting RFID microchips in livestock and pets allows for positive identifica-
tion of animals.

RFID tags are small, easy to use and can be attached to cash, clothing, and posses-
sions, or implanted in animals and people.

Radio waves are constantly being sent out from the scanner. When a tag is close
enough to the reader, the radio waves will power the tag and activate it, allowing it
to send data back to the reader via its own radio waves.

EEPROM – Stand for Electrically Erasable Programmable Read-only Memory and is
a type of memory used in computers and other electronic devices to store relatively
small amounts of data, but allowing individual bytes to be erased and reprogrammed.

NEW TERMS USED IN THIS PROJECT:

3

WHAT IS A RADIO FREQUENCY ID READER?

SPI – Stands for Serial Peripheral Interface bus - is a synchronous (meaning the
data is kept identical by using a clock signal) serial communication (meaning that
the data is delivered and received one byte at a time) interface specification used
for short distance communication. This was developed by Motorola in the 80s and
remains the standard.

PICC – Pronounced “pick – c” – PIC stands for Peripheral Interface Controller and the
C is for the C programming language (in this case, used to program the EEPROM)

UID – Unique Identifier, as in each RFID tag has its own UID so we can tell them apart.

HEX – Short for Hexadecimal, which is a base 16 number system, using 16 symbols
(0-9 and A-F) to represent a much larger string of numbers. Each hexadecimal digit
represents four binary digits (bits), it allows a more human-friendly representa-
tion of binary-coded values. One hexadecimal digit represents a nibble (4 bits),
which is half of an octet or byte (8 bits).

Example:

The number 0 represents 0000

The number 5 represents 0101

The letter F represents 1111

Therefore, sending 5F005F would be 0101 1111 0000
0000 0101 0101 in binary

NEW COMMANDS AND FUNCTIONS FOR THIS PROJECT

Commands defined in the EEPROM library:

EEPROM.read – gathers the data stored in the EEPROM
EEPROM.write – sends data to the EEPROM

AntennaGain – This command will set the gain (or power
intensity) of the antenna embedded into the scanner.

4

HARDWARE

B U I L D I N G T H E E L E C T R I C A L C I R C U I T

1) Let’s begin by wiring the power to the breadboard and setting up the piezo
buzzer, LED, and potentiometer. Remember, the potentiometer will be used to
adjust the contrast of the LCD screen.

2) There are two 220 Ohm resistors, one for the LED and one for the LCD screen

3) Connect input and ground to the buzzer and LED

4) Connect the LC Screen to the Arduino – this should be a familiar setup to what you
have done in past projects.

5

HARDWARE

5) Now let’s connect the RFID Reader to the Arduino.

6) When connecting the RFID Reader, the jumper wires will actually be behind the
module. They are shown on top of the module to make it easier to see where the
wires should terminate.

That’s it for the hardware!

6

LIBRARIES

BEFORE WE BEGIN PROGRAMMING, WE WILL NEED THE FOLLOWING LIBRARIES:

The following 3 libraries are usually loaded with the Arduino IDE software.

EEPROM.h - Read and write PICC’s UIDs from/to EEPROM
SPI.h - SPI protocol
LiquidCrystal.h - LCD Display

You should see them here:

7

LIBRARIES

This is a new library and will need to be installed.

MFRC522.h - RFID Reader - RC522 Module

1.	 Download the Library from www.mycreationcrate.com/month-17

2.	 Open the Arduino IDE

3.	 Select Sketch → Include Library → Add .ZIP Library…

4.	 Go to the location you saved the file (usually this will be in your Downloads folder)

5.	 Select the file and click Open

6.	 The library is now installed and ready for use. You can confirm this when you
begin writing your code. When you enter the command:

#include <MRFC522.h> the text should change to green and orange

#include <MRFC522.h>

8

PROGRAM

//Month 17: RFID

#include <EEPROM.h> //Library To read and write PICC’s UIDs from/to EEPROM
#include <SPI.h> //Library RC522 Module uses SPI protocol
#include <MFRC522.h> //Library RC522 Module
#include <LiquidCrystal.h> //Library for LCD Display

boolean match = false; // initialize card match to false
boolean programMode = false; // initialize programming mode to false
int successRead; // Variable integer to keep if we have Successful Read
from Reader
byte storedCard[4]; // Stores an ID read from EEPROM
byte readCard[4]; // Stores scanned ID read from RFID Module
byte masterCard[4]; // Stores master card’s ID read from EEPROM
#define SS_PIN 10
#define RST_PIN 9
MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.
LiquidCrystal lcd(7, 6, 5, 4, 3, 2); //Initializing LCD PINS as
(RS,EN,D4,D5,D6,D7)
void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600); // Initialize serial communications with PC
 lcd.begin(16, 2); //Initializing LCD 16x2
 pinMode(8, OUTPUT); //LED and Buzzer PIN OUT
 SPI.begin(); // MFRC522 Hardware uses SPI protocol
 mfrc522.PCD_Init(); // Initialize MFRC522 Hardware
 mfrc522.PCD_SetAntennaGain(mfrc522.RxGain_max);
 if (EEPROM.read(1) != 1) { // Look EEPROM if Master Card defined,
EEPROM address 1 holds if defined
 Serial.println(“No Master Card Defined”); //When no Master Card in
Your EEROM (Serial Display)
 Serial.println(“Scan A PICC to Define as Master Card”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.println(“SCAN MASTER “); //When no Master Card in Your EEROM
(LCD Display)
 lcd.setCursor(0, 1);
 lcd.println(“SCAN A KEYCARD”); //Scan any RFID CARD
to set Your Master Card in Your EEROM (LCD Display)
 delay(1500);
 do {

9

PROGRAM (CONT'D)

 successRead = getID(); // sets successRead to 1 when we get read
from reader otherwise 0
 }
 while (!successRead); //the program will not go further while you
not get a successful read
 for (int j = 0; j < 4; j++) { // Loop 4 times
 EEPROM.write(2 + j, readCard[j]); // Write scanned PICC’s UID to
EEPROM, start from address 3
 }
 EEPROM.write(1, 1); //Write to EEPROM we defined Master Card.
 Serial.println(“Master Card Defined”);

 }
 Serial.println(“Master Card’s UID”);
 for (int i = 0; i < 4; i++) { // Read Master Card’s UID from
EEPROM
 masterCard[i] = EEPROM.read(2 + i); // Write it to masterCard
 Serial.print(masterCard[i], HEX); //Master Card only view in serial
 Serial.println(“Waiting PICCs to be scanned”);
 }
 //WAITING TO SCAN THE RFID CARDS:
 Serial.println(“”);
 Serial.println(“Waiting PICCs to be scanned”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.println(“WAITING: “);
 lcd.setCursor(0, 1);
 lcd.println(“SCAN CARD/TOKEN “);
 delay(1500);
}
void loop() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ SWIPE”);
 lcd.setCursor(0, 1);
 lcd.print(“ CARD/TOKEN”);

 /*
 if (digitalRead(BUTTON) == HIGH);
//To Delete the EEROM USE the below command just run it
 {
 // for (int i = 0 ; i < EEPROM.length() ; i++) {
 // EEPROM.write(i, 0);

10

PROGRAM (CONT'D)

 // }
 // } */
 do {
 successRead = getID(); // sets successRead to 1 when we get read
from reader otherwise 0
 if (programMode) {
 // Program Mode cycles through RGB waiting to read a new card
 }
 else {
 }}
 while (!successRead); //the program will not go further while you not
get a successful read
 if (programMode) {
 if (isMaster(readCard)) { //If master card scanned again exit
program mode
 Serial.println(“This is Master Card”);
 Serial.println(“Exiting Program Mode”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ EXITING FROM”);
 lcd.setCursor(0, 1);
 lcd.print(“PROGRAMING MODE”);
 delay(2000);
 programMode = false;
 return;
 }
 else {
 if (findID(readCard)) { //If scanned card is known delete it
 Serial.println(“I know this PICC, removing from DB”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ ACTIVE TOKEN:”);
 lcd.setCursor(0, 1);
 lcd.print(“REVOKING ACCESS”);
 delay(5000);
 deleteID(readCard);
 Serial.println(“-----------------------------”);
 }
 else { // If scanned card is not known add it
 Serial.println(“I do not know this PICC, adding to DB...”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“Card no:”);

11

PROGRAM (CONT'D)

 lcd.setCursor(0, 1);
 lcd.print(readCard[0], HEX);
 lcd.print(readCard[1], HEX);
 lcd.print(readCard[2], HEX);
 lcd.print(readCard[3], HEX);
 lcd.print(readCard[4], HEX);
 delay(4000);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ NEW TOKEN:”);
 lcd.setCursor(0, 1);
 lcd.print(“GRANTING ACCESS”);
 delay(5000);
 writeID(readCard);
 Serial.println(“-----------------------------”);
 }} }
 else {
 if (isMaster(readCard)) { // If scanned card’s ID matches Master
Card’s ID enter program mode
 programMode = true;
 Serial.println(“Welcome to Mastercard Mode”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ID: MASTER CARD”);
 lcd.setCursor(0, 1);
 lcd.print(“PROGRAMING MODE”);
 delay(3000);
 int count = EEPROM.read(0); // Read the first Byte of EEPROM that
 Serial.print(“I have “); // stores the number of ID’s in EEPROM
 Serial.print(count);
 Serial.print(“ record(s) on EEPROM”);
 Serial.println(“”);
 Serial.println(“Scan a PICC to ADD or REMOVE”);
 Serial.println(“-----------------------------”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“SCAN CARD/TOKEN”);
 lcd.setCursor(0, 1);
 lcd.print(“TO ADD / REMOVE”);
 delay(2500);
 }
 else {

12

PROGRAM (CONT'D)

 if (findID(readCard)) { // If not, see if the card is in
the EEPROM
 Serial.println(“ACCESS GRANTED”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ ID AUTHORIZED”);
 lcd.setCursor(0, 1);
 lcd.print(“ ACCESS GRANTED”);
 for (int abcd = 0; abcd < 2; abcd++)
 {
 digitalWrite(8, HIGH);
 delay(200);
 digitalWrite(8, LOW);
 delay(100);
 }
 delay(900);
 lcd.clear();
 }

 else { // If not, show that the ID was not valid
 Serial.println(“Access Denied”);
 for (int abcd = 0; abcd < 4; abcd++)
 {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ UNKNOWN ID”);
 lcd.setCursor(0, 1);
 lcd.print(“ ACCESS DENIED”);
 digitalWrite(8, HIGH);
 delay(600);
 digitalWrite(8, LOW);
 lcd.clear();
 lcd.print(“ UNAUTHORIZED”);
 lcd.setCursor(0, 1);
 lcd.print(“ PERSONNEL”);
 delay(900);
 }
 lcd.clear();
 }}}}

int getID() {
 // Getting ready for Reading PICCs

13

PROGRAM (CONT'D)

 if (! mfrc522.PICC_IsNewCardPresent()) { //If a new PICC placed to
RFID reader continue
 return 0;
 }
 if (! mfrc522.PICC_ReadCardSerial()) { //Since a PICC placed get
Serial and continue
 return 0;
 }

 Serial.println(“Scanning PICC’s UID.........”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ SCANNING”);
 lcd.setCursor(0, 1);
 lcd.print(“ CARD / TOKEN”);
 delay(2000);
 for (int i = 0; i < 4; i++) { //
 readCard[i] = mfrc522.uid.uidByte[i];
 Serial.print(readCard[i], HEX);
 }
 Serial.println(“”);
 mfrc522.PICC_HaltA(); // Stop reading
 return 1;
}
boolean isMaster(byte test[]) {
 if (checkTwo(test, masterCard))
 return true;   else
 return false;
}

boolean checkTwo (byte a[], byte b[]) {
 if (a[0] != NULL) // Make sure there is something in the array first
 match = true; // Assume they match at first
 for (int k = 0; k < 4; k++) { // Loop 4 times
 if (a[k] != b[k]) // IF a != b then set match = false, one fails,
all fail
 match = false;
 }
 if (match) { // Check to see if if match is still true
 return true; // Return true
 }
 else {
 return false; // Return false

14

PROGRAM (CONT'D)

 }}
boolean findID(byte find[]) {
 int count = EEPROM.read(0); // Read the first Byte of EEPROM that
 for (int i = 1; i <= count; i++) { // Loop once for each EEPROM entry
 readID(i); // Read an ID from EEPROM, it is stored in storedCard[4]
 if (checkTwo(find, storedCard)) { // Check to see if the
storedCard read from EEPROM
 return true;
 break; // Stop looking we found it
 }
 else { // If not, return false
 }}
 return false;
}
void readID(int number) {
 int start = (number * 4) + 2; // Figure out starting position
 for (int i = 0; i < 4; i++) { // Loop 4 times to get the 4 Bytes
 storedCard[i] = EEPROM.read(start + i); // Assign values read from
EEPROM to array
 }
}
void deleteID(byte a[]) {
 if (!findID(a)) { // Before we delete from the EEPROM, check to see
if we have this card!
 failedWrite(); // If not
 }
 else {
 int num = EEPROM.read(0); // Get the numer of used spaces, position
0 stores the number of ID cards
 int slot; // Figure out the slot number of the card
 int start;// = (num * 4) + 6; // Figure out where the next slot starts
 int looping; // The number of times the loop repeats
 int j;
 int count = EEPROM.read(0); // Read the first Byte of EEPROM that
stores number of cards
 slot = findIDSLOT(a); //Figure out the slot number of the card to
delete
 start = (slot * 4) + 2;
 looping = ((num - slot) * 4);
 num--; // Decrement the counter by one
 EEPROM.write(0, num); // Write the new count to the counter
 for (j = 0; j < looping; j++) { // Loop the card shift times
 EEPROM.write(start + j, EEPROM.read(start + 4 + j)); // Shift the

15

PROGRAM (CONT'D)

array values to 4 places earlier in the EEPROM
 }
 for (int k = 0; k < 4; k++) { //Shifting loop
 EEPROM.write(start + j + k, 0);
 }
 successDelete();
 }}
 //For Failed to add the card:
void failedWrite() {

 Serial.println(“something wrong with Card”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ PROBLEM ADDING”);
 lcd.setCursor(0, 1);
 lcd.print(“ TRY AGAIN”);
 delay(2000);
}
//For Sucessfully Deleted:
void successDelete() {
 Serial.println(“Succesfully removed”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ SUCCESFULLY”);
 lcd.setCursor(0, 1);
 lcd.print(“ REMOVED”);
 delay(2000);
}
int findIDSLOT(byte find[]) {
 int count = EEPROM.read(0); // Read the first Byte of EEPROM that
 for (int i = 1; i <= count; i++) { // Loop once for each EEPROM entry
 readID(i); // Read an ID from EEPROM, it is stored in storedCard[4]
 if (checkTwo(find, storedCard)) { // Check to see if the
storedCard read from EEPROM
 // is the same as the find[] ID card passed
 return i; // The slot number of the card
 break; // Stop looking we found it
 }
 }
}
//For Sucessfully Added:

16

void successWrite() {

 Serial.println(“Succesfully added”);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(“ SUCCESFULLY”);
 lcd.setCursor(0, 1);
 lcd.print(“ ADDED”);
 delay(2000);
}
//For Adding card to EEROM:
void writeID(byte a[]) {
 if (!findID(a)) { // Before we write to the EEPROM, check to see if
we have seen this card before!
 int num = EEPROM.read(0); // Get the numer of used spaces, position
0 stores the number of ID cards
 int start = (num * 4) + 6; // Figure out where the next slot starts
 num++; // Increment the counter by one
 EEPROM.write(0, num); // Write the new count to the counter
 for (int j = 0; j < 4; j++) { // Loop 4 times
 EEPROM.write(start + j, a[j]); // Write the array values to
EEPROM in the right position
 }
 successWrite();
 }
 else {
 failedWrite();
 }
}

/ / Attribution: Non Stop Engineering

PROGRAM (CONT'D)

DOWNLOAD THE CODE AT:
www.creationcrate.com/month-17

SSKR45

17

WHAT YOU SHOULD SEE

When you power up the Uno R3, the LCD screen should say “SWIPE CARD/TOKEN.”

When you hold the white Master Card in front of the reader it will say, “SCANNING
CARD/TOKEN” and then “ID: MASTER CARD PROGRAMMING MODE,” then “SCAN
CARD/TOKEN TO ADD/REMOVE.”

Hold the Key Fob Token in front of the reader and it will display, “Card no:
__________” and then “NEW TOKEN: GRANTING ACCESS.”

If the card number is already in the database, it will read, “ACTIVE TOKEN:
REVOKING ACCESS.”

When you are done adding/removing card access, hold the Master Card in front of
the reader again and you should see, “EXITING PROGRAMMING MODE.”

18

EXERCISES

SOLVE THESE PROBLEMS AND WRITE THE ANSWERS BELOW.

1. How would you change the number of times that the LED
and Message flash when access is denied to just 3 times?

3. How would you increase the number of beeps you hear to 3 when access is granted,
without also changing the number of times the message flashes on the screen?

Answer:

Answer:

Answer:

2. How would you make the “Access Granted” message appear
for a longer period of time on the LCD screen?

19

MONTHLY CHALLENGE

1. Add a red LED and change the program so that it flashes when access is denied
instead of the other LED.

2a.Use parts and integrate code from Month 13, Infrared Security System, or
Month 15, Laser Trip Wire, and use the badge to disarm the system.

2b.Can you also rearm the system when you leave?

SUPPORT PAGE:
www.creationcrate.com/month-17

SSKR45

Still need help?
Go to www.creationcrate.com and use our contact page!

20

SNEAK PEEK

HERE’S A SNEAK PEAK AT NEXT MONTH’S PROJECT!

Can you guess what next month’s project is?

WWW.CREATIONCRATE.COM/PREVIEWV18j

21

